r-mode instability and spin frequencies of compact stars
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m Slellar Oscillationswhat information do they convey?

¥ r-modes sensitivity to the equation of state

m \iscosityandr-mode damping

m Neutron stars with/without quark mattetistinctions

B How fast can such compact stars spin
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Oscillation modes are classified by nature of restoringd

5 Coriolis force ) term in rotating stars

5 Pressure fluctuations, convective instability

s Buoyancy (gravity) smooths out inhomogeneity
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Oscillation modes are classified by nature of restoringd

5 Coriolis force ) term in rotating stars

5 Pressure fluctuations, convective instability

s Buoyancy (gravity) smooths out inhomogeneity

(no radial node): Cepheid variables distance estimators

> used In helioseismography; verified standard solar model.
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Perturbations trigger oscillatio

Core-collapse: Neutron stars born in oscillatory state
Crust-breaking and glitches lead to oscillations
Interactions with companion/rapid mass-transfer

Second collapse: phase transition to quark matter?
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Perturbations trigger oscillatio

Core-collapse: Neutron stars born in oscillatory state
Crust-breaking and glitches lead to oscillations
Interactions with companion/rapid mass-transfer

Second collapse: phase transition to quark matter?

stellar oscillations occur in a variety of astrophysicalqasse
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Perturbed Euler equation (linearized)

Y,

m o (7' x V)Y, are vector spherical harmonics
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Perturbed Euler equation (linearized)

Y,

m o (7' x V)Y, are vector spherical harmonics

Solutions can be classified by parity:
I transform ag—1)" ( )
: transform ag—1)" ( )
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Additional Coriolis force term EISERL),

In the fluid rest-frame, fluid displacem@t: fot dt dv obeys:

— w2+ 2w, (A x £) = -V (5—P — 5@)

p

Employ the for small€2: (0@ = 0)

B 2mS)
[(l4+1)

W, =
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Additional Coriolis force term EISERL),

In the fluid rest-frame, fluid displacem@t: fot dt dv obeys:

B L J2
—w2E 4 2w, (2 x &) = =V (5— — 5@)

p

Employ the for small€2: (0@ = 0)

B 2mS)
[(l4+1)

W, =

To leading order in{) (stellar rotation frequency), there Iis
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. rotation modifies structure
QQ
7TG,0_0

QQ

+O(0Y

po(T) + p2(r, cosd)

Do (1) + Do (7, cosh) + O(OY

mG po
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. rotation modifies structure

QQ
p(r,0) = po(r)+ pa(r, COS@)WGIO_O + (’)(94)
QQ
O(r,0) = ®y(r) + Py(r, cosd) —— + O(QY)
mG po

depends on the density profile and radius of the star:
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(r-mode freqg./rotation freq.) vs. rotation freq. (Kepler units)

n=1
n=1.5
n=2

Leading order i self-bound Quark Mattd

n = polytropic index (neutron star) of mass 14MR=12.5km

Quark matter parametersl(§=l65 MeV, m=150 MeV)
(mass 1.2, R=9.7km)

WERIAEE P = K p'tt/n

~Bag model (n, # 0)
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Contribution of gravitational waves temodes:

dFE
— > (v — mQ)?™ | 6 |
dt QW N——"

current multipole

m > 2, w, < mf),
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Energy ofr-mode is dissipated by bulk) and shearf) viscosity

2
Tjij — ak:/Uk: 5@' -+ (5’2-113- -+ 83-?}7; — §0kvk5m) — P(SZ]

N

0} Oij

The energy contained in anmode is given by:

r

E. o< R*Q? Rdr (—)2m+2 O(N*
r :00( ) T ( )
0

R

..and Is dissipated at the rate

dt
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The timescale asociated to growth or dissipationig given by
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The timescale asociated to growth or dissipationig given by

. r-modes will be effective in spinning down the star

. r-modes are quickly dampet;
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r-mode Recap

ode oscillations is generic to all rotating stars
oriolis force)

er-mode Is unstable to gravitational-wave emission
all m > 2




r-modes are low-frequency modeskHz) so only weak reactions

are out of equilibrium :

(g — ) OScillates about equilibrium valyg=0)
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r-modes are low-frequency modeskHz) so only weak reactions

are out of equilibrium :

(g — ) OScillates about equilibrium valyg=0)

For small perturbation amplitudes (J. Madsen, PRD 46, 32902))
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Lightest excitations in CFL aré&/-boson (superfluid phonon)
and K (kaon)

CFL Flavor re-equilibration JiGEaSs§s RN Gy =
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Lightest excitations in CFL aré&/-boson (superfluid phonon)
and K (kaon)
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measures ease of momentum transport perpendicular to flow

en determined by;q scattering

en determined by small-angle

phonon ( ) collisions

(C. Manuel et al., JHEP 0509, 076 (2005))
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Z (bulk)
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The bulk viscosity is controlled by the modified urca process
n+n—on+p+e + v, )

The shear viscosity is determined by scattering in non-superfluid

matter ( ); by ee, eu scattering in superfluid matter ~ --pe=



— Bag
CFL
— — APR+Bag

—-— APR+CFL

:rBulk viscosity dampg-mode instability

In a wide range of .
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—— Bag

CFL
— — APR+Bag

—-— APR+CFL

:rBulk viscosity dampg-mode instability

In a wide range of .

rr-mode Is undamped in a narrow window
(5 x 10°K< T < 5 x 101°K)
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, fraction of energy dissipated/unit time
exactly cancels againstmode growth by gravitational wave
emission.
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, fraction of energy dissipated/unit time
exactly cancels againstmode growth by gravitational wave
emission.
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Results; Limitson rotation

® Neutron starsre stable against themode instability at very
high (I' > 10'° K) or very low temperatureg{ < 107 K).
Neutron stars are spun down rapidly by thmode instability
shortly after their birth at MeV temperatures
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Results; Limitson rotation

® Neutron starsre stable against themode instability at very
high (I' > 10'° K) or very low temperatureg{ < 107 K).
Neutron stars are spun down rapidly by thmode instability
shortly after their birth at MeV temperatures

m Strange stars with non-superfluid quark mathisplay a
stability window between(0°K < 7' < 5 x 10°K where they
can spin at a substantial fraction of the Kepler frequency

m Strange stars in the CFL phasa&n spin at frequencies close to
the Kepler limit even as they cool bela!'’K.
LMXB’s with quark matter can spin faster than observed limit
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Summary
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determines how fast a compact star can spin
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Summary

® r-mode instability affects all rotating stars;
determines how fast a compact star can spin

= Viscosity damps-mode;
new phases of dense matter cha(ge) and critical freq.

»m CFL phase allows most rapid rotation frequencies;
faster than observed LMXBs

B Studies oimixed & heterogenous phases more complicated

.—p.24/31



Recent works

= Viscosity andr-modes of 2SC, CSL phases
B. Sa'd, arXiv:0806.3359

= Viscosity from urca{ — « + ¢ + 1.) process in quark matter
B. Sa'd, I. Shovkovy and D. Rischke, PRD 75 (2007) 125004

» Viscosity and--modes of Kaon-condensed phases

(n,p, K)
D. Chatterjee and D. Bandyopadhyay, PRD 75 (2007) 123006

= Viscosity of Kaon-condensed CFL (moderate density)
M. Alford, M. Braby & A. Schmitt, arXiv:0806.0285

= Mutual friction of the CFL phase (r-modes undamped)
M. Mannarelli, C. Manuel & B. Sa'd, arXiv:0807.3264
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Visualizing r-modes

® The angular dependence of the flow (latitude dependence) is
given by magnetic-type vector spherical harmonics:

YE = [I(l+ 1)]"Y2rV x (rVYy)

® Flow of fluid element in--mode conservegorticity

dt

d (ér.(v X 0T) + 2@.@) — 0
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Henrietta Leavitt (1908)
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effective

m > 2, aprograde mode appears retrograde

/\ | m——
@ a/

E’rot T: Ezn l _Q J l .—p.28/31




Fluid perturbation equations

(perturbed) Variables:

Energy density, PressufT75

Velocity 0
Grav. Potenti{f{d
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(perturbed) Variables:

obey equations:
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(perturbed) Variables:

obey equations:

5(V, T")=0
5(V2® + 4 Gp)=0
=0

Close the system: specify a barotropic Equation of Stat&)Eo
Pressure vs. density = P(p) —pasaL




PdV dissipation due to chemical re-equilibration over comgi@s
Wl V(1) = Vo + Re[oVe™?];  P(t) = Py + Re[o Pe™| |k

phase lag betweerl” and) P due to finite equilibration rate )
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PdV dissipation due to chemical re-equilibration over comgi@s
Wl V(1) = Vo + Re[oVe™?];  P(t) = Py + Re[o Pe™| |k

phase lag betweerl” and) P due to finite equilibration rate )

Dissipation is maximum when frequency of mode is close tg)an
equilibration rate in the fluid
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weak attractive interaction between gquarks at high density

—

3 massless quark flavors: Color-Flavor Locking (CFL)

L~{qq); R~ (g7 r ~ reijre™ B

SU3).ex SUB), x SUB)r x U(1)p — SU(3)ecsrrr X Z3
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weak attractive interaction between gquarks at high density

—

3 massless quark flavors: Color-Flavor Locking (CFL)
bk

L~ R~ (qq))r ~ reijre’

SU3).ex SUB), x SUB)r x U(1)p — SU(3)ecsrrr X Z3

Alford, Rajagopal and Wilczek (NPB 537, 443 (1999))

el O quarks and 8 Higgsed gluo
el pal Nambu-Goldstone boso

A pseudoscalar (color-flavonctetof mesons;

( )
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